
Maarten Wijdekop

Business Developer

maarten.wijdekop@quantum.amsterdam

Koen Groenland
Quantum Innovation Officer
koen.groenland@quantum.amsterdam

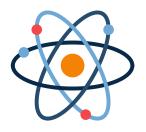
Partners

National Agenda awarded **€615M** (2021-2027) for

Research, Education & Ecosystem Development

Running collaborations & active network with key industries

Backed by leading research institutes



Quantum Algorithms

- Risk modelling (banking, insurance)
- Network analysis (pattern recognition, fraud detection)
- Logistics & Process optimization
- Material Science & Drug Discovery

Quantum Hardware

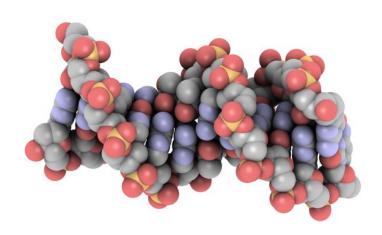
- Ultracold atoms (Sr) as qubits
- Quantum sensing (mining, navigation)
- Quantum clocks (high precision time stamping, power grid & mobile network optimisation, GPS)

Universiteit van Amsterdam

Quantum Cryptography

- Quantum Key Distribution
- Quantum-safe cryptography

Key use-cases of Quantum Computers


1. Quantum chemistry and material science

Drug design

Batteries

Production of chemicals

Superconductors

2. Cracking cryptography

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack	
Agymmatria	RSA 2048	112	0	Shor's Algorithm	Authentication, Digital signatures, Key distribution
	RSA 3072	128			
Asymmetric	ECC 256	128			
	ECC 521	256			
Symmetric	AES 128	128	64 Grover's	Diain annuation	
	AES 256	256	128	Algorithm	Plain encryption

Key use-cases of Quantum Computers

3. Optimization and machine learning

Volkswagen optimizes traffic flow with quantum computers

Article Open Access | Published: 10 February 2020

Quantum optimization for aircraft's tail assignment problems

Picking optimal portfolios using Quantum Computing

Training deep quantum neural networks

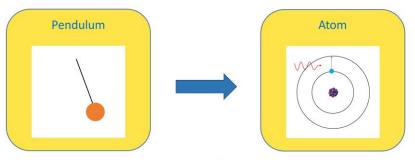
Kerstin Beer [™], Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann & Ramona Wolf

Nature Communications 11, Article number: 808 (2020) | Cite this article 45k Accesses | 63 Citations | 23 Altmetric | Metrics

Quantum Clocks - opportunities

Network users/applications

- GPS
 - Time/frequency reference for (local) NTP and PTP networks
 - Electrical grid monitoring
 - Mobile networks
- NTP
 - General-purpose synchronization of datacenters, servers, computers
- PTP
 - Systems for electronic financial transactions and trading
 - Electrical grid monitoring
 - Synchronization of robots in industrial plants
 - Mobile networks



Quantum Clocks & Time Distribution

Classical vs. quantum clock

Task: build the best clock in the world

Highest accuracy

High transition frequency → optical transitions

Narrow transition → mHz linewidth

Large signal → use many atoms

Undisturbed by other atoms → use gas of atoms

No Doppler shift → cool atoms to standstill

Easy access

Reference Sr optical clock and time+frequency distribution system

Time and frequency as a

service

Long-term operation of National Sr Optical Clock

Fibre network

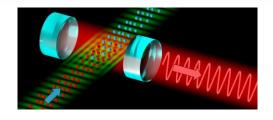
Time and frequency distribution equipment

Jeroen Koelemeij: time and frequency distribution research

- Terrestrial navigation
- Security
- Neutral atom quantum computing
- Fundamental research

European network (Paris)

Quantum.Amsterdam activities


World-renowned R&D

Dedicated Quantum Software research center since 2015

Discovering clustering algorithms with ABN AMRO

Building world's most accurate quantum clock

Education programs in Amsterdam

Unique MSc Course
"Quantum in
Business and Society"

Workforce training "General Awareness Quantum Computing"

Active outreach and meetup programme